

消事大家 交叉信息研究院 İİ. Institute for Interdisciplinary Information Sciences, Tsinghua University

Motivation:

- How to address the bottleneck of limited 3D data in Open Vocabulary 3D Object **Detection**?
- How to minimize the domain gap to better transfer 2D knowledge to 3D, thereby enhancing the performance of Open Vocabulary 3D Object Detection?

Method:

Loss Function

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{loc}} + \sum_{i} W_{i} \times \text{CrossEntropy}(\text{Cls-header}(\mathcal{F}_{i}) \cdot \mathcal{F}_{\text{text}})$$

ImOV3D: Learning Open Vocabulary Point Clouds **3D Object Detection from Only 2D Images**

Timing Yang^{1,2*} Yuanliang Ju^{1,2*} Li Yi^{1,2,3†}

Shanghai Qi Zhi Institute¹, IIIS Tsinghua University², Shanghai AI Lab³

Main Results:

Stage	Data Type	Method	Input		Training Strateg	y SUNRGBD mAP@0.25	ScanNet mAP@0.25
Pre- training	Pseudo Data	OV-VoteNet [38] OV-3DETR [34] OV-3DET [30] Ours	Point Clo Point Clo Point Cloud + Point Clo	ud ud Image ud	One-Stage One-Stage Two-Stage One-Stage	5.18 5.24 5.47 12.61 ↑ 7.14	5.86 5.30 5.69 12.64 ↑ 6.78
Stage	Method	l Inj	put	Traini	ng Strategy	SUNRGBD mAP@0.25	ScanNet mAP@0.25
Adap- tation	OV-3DET [CoDA [5 Ours	30] Point Clou [] Point Point Point	ıd + Image Cloud Cloud	Tw Or Or	vo-Stage ne-Stage ne-Stage	20.46 22.53↑ 2.07	18.02 19.32 21.45↑ 2.13

Ablation Study:

3D Data Revision

Stage	Train Phase Prior Size	Rotation Correction	Inference Phase Semantic Size	SUNRGBD mAP@0.25	ScanNet mAP@0.25
	×	×	×	8.35	8.33
Pre-	\checkmark	×	×	10.00	9.60
training	×	\checkmark	×	9.65	10.29
	\checkmark	\checkmark	×	11.33	11.64
	\checkmark	\checkmark	\checkmark	12.61	12.64

> Depth Map VS Pseudo Images

Stage	Rendered Images Data Types	SUNRGBD mAP@0.25	ScanNet mAP@0.25
Pre-	Depth Map	4.38	4.47
training	Pseudo Images	12.01	12.04

ImOV3D Website

Rate

2D Off-the-shelf + 3D Adaptation 18.8 18.96 Off-the-shelf + 3D Pretraining 19.67 19.25 2D Off-the-shelf + 3D Adaptation 22.53 2D Adaptation + 3D Adaptation 21.45 2D Pretraining + 3D Pretraining

Visualization:

Ground Truth Images	Ground Truth Point Clouds	OV-3DET	ImOV3D(Ours)
	TEEL		
Ground Truth Images	Ground Truth Point Clouds	OV-3DET	ImOV3D(Ours)
<section-header></section-header>	Ground Truth Point Clouds	OV-3DET	ImOV3D(Ours)
<section-header><image/><image/></section-header>	<section-header><section-header></section-header></section-header>	<image/>	<image/>
<section-header></section-header>	<section-header></section-header>	<image/>	<section-header></section-header>